
LAPACK WORKING NOTE XXX: A TESTING INFRASTRUCTURE
FOR LAPACK’S SYMMETRIC EIGENSOLVERS∗

JAMES W. DEMMEL‡, OSNI A. MARQUES†, BERESFORD N. PARLETT‡, AND CHRISTOF

VÖMEL†

Abstract. LAPACK is often mentioned as a positive example of a software library that encap-
sulates complex, robust, and widely used numerical algorithms for a wide range of applications. At
installation time, the user has the option of running a (limited) number of test cases to verify the
integrity of the installation process. On the algorithm developer’s side, however, more exhaustive
tests are usually performed to study algorithm behavior on a variety of problem settings and also
computer architectures. In this process, difficult test cases need to be found that reflect particular
challenges of an application or push algorithms to extreme behavior. These tests are then assembled
into a comprehensive collection, therefore making it possible for any new or competing algorithm to
be stressed in a similar way. This note describes such an infrastructure for exhaustively testing the
symmetric tridiagonal eigensolvers implemented in LAPACK. It consists of two parts: a selection of
carefully chosen test matrices with particular idiosyncrasies and a portable testing framework that
allows easy testing and data processing. The tester facilitates experiments with algorithmic choices,
parameter and threshold studies, and performance comparisons on different architectures.

AMS subject classifications. 15A18, 15A23.

Friday 23rd February, 2007, 8:38am

1. Introduction. The LAPACK software library [2] provides a variety of drivers
and computational routines for the sequential solution of Numerical Linear Algebra
Problems. In preparation for a new release of LAPACK in 2007, we found it necessary
to create a comprehensive testing environment to evaluate and compare the latest ver-
sions of LAPACK’s symmetric eigensolvers. This paper describes our infrastructure,
consisting of a test program and a set of test matrices.

Our approach was guided by the following goals:
1. to facilitate a critical examination of algorithm parameters,
2. to allow easy post-processing of test results by tools such as Matlab or Excel,
3. to create an easily portable infrastructure for various architectures, and
4. to provide interesting and challenging test cases.

LAPACK provides testers for a basic verification of its drivers and computational
routines at installation time. This is useful for detecting problems caused by too
aggressive compiler optimization options or IEEE arithmetic features.

Our new testing infrastructure, stetester, is more comprehensive and useful
for deeper studies of algorithms than the LAPACK tester. Following the approach
adopted in the development of LAPACK, the tester is written in FORTRAN. It has
three main applications:

1. to experiment with and select algorithmic variants as in [38],
2. to tune parameters and thresholds such as those to be set by LAPACK’s

ILAENV,
3. to carry out large scale performance comparisons such as [38, 10], and

∗This work was partly supported by a grant from the National Science Foundation (Cooperative
Agreement no. ACI-9619020), and by the Director, Office of Computational and Technology Re-
search, Division of Mathematical, Information, and Computational Sciences of the U.S. Department
of Energy under contract No. DE-AC03-76SF00098.

†Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50F-1650, Berkeley, CA 94720,
USA, OAMarques,CVoemel@lbl.gov.

‡Mathematics Department and Computer Science Division, University of California, Berkeley,
CA 94720, USA. demmel@cs.berkeley.edu,parlett@math.berkeley.edu

1

2 J. .W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel

4. to validate and benchmark new algorithms such as [39].
A brief summary of LAPACK’s symmetric eigensolvers for which this tester has

been developed is given in Table 1.1. 1

Algorithm LAPACK Subset Workspace References
name subroutine Feature Real/Integer
QR algorithm STEQR N 2n− 2/0 [9, 31, 40]
Divide & Conquer STEDC N 1 + 4n + n2/3 + 5n [5, 7, 33, 34]
Bisection/Inverse Iter. STEBZ/STEIN Y 8n/5n [13, 36]
MRRR algorithm STEGR Y 18n/10n [12, 41, 42, 15, 16, 17]

Table 1.1
LAPACK codes for computing eigenpairs of a symmetric tridiagonal matrix of dimension n,

see also [2, 4]. Note that in addition to computing all eigenpairs, inverse iteration and the MRRR
algorithm (MRRR = Multiple Relatively Robust Representations) also allow the computation of
eigenpair subsets at reduced cost.

While it is possible to perform some of the tasks of this testing environment in
Matlab, our tester does have some benefits:

• Being written in Fortran, it is portable across architectures at no cost.
• Low-level access to compiler options, IEEE directives, algorithm parameters,

and detailed performance measures is possible.
• The overhead with respect to memory is negligible so that large matrices can

be tested.
One particularly useful feature is our collection of interesting test matrices. We

are interested in two types, ones that
• exhibit the strengths, weaknesses, or idiosyncrasies of a particular algorithm,

and/or
• stem from an important application and thus are relevant to a group of users.

Matrix classes or families can be of additional use as they allow scalability studies.
As an example, matrices with clustered eigenvalues are considered to be difficult.
Inverse iteration requires Gram-Schmidt orthogonalization to guarantee orthogonal
eigenvectors. Likewise, the MRRR algorithm struggles with very tight clusters of
eigenvalues, see the examples in [18]. As a second example, in order to understand
the complexity of the Divide-and-Conquer algorithm, it is crucial to study the matrix-
dependent deflation process (see for example [9]).

Test matrices were originally designed to validate new algorithms. As the authors
of [32] state: ‘what is needed is a collection of numerical examples with which to test
each algorithm as soon as it is proposed.’ Today, aspects other than pure validation
have become equally important, in particular performance-related ones. There exist
a number of sparse matrix collections that are most commonly used to evaluate the
performance of sparse direct solvers [20, 21, 22, 8]. Furthermore, Matlab provides a
test matrix collection based on [35]. Matrix market contains non-Hermitian eigenvalue
problems from [3]. Finally, a test matrix generator of large sparse matrices with given
spectrum for the evaluation of iterative methods was recently presented in [37].

This paper makes two contributions:
1. The testing infrastructure with the features mentioned above.

1The workspace that is reported for Divide & Conquer corresponds to the case COMPZ = ’I’. The
workspace that is reported for Bisection/Inverse Iteration is for SYEVX, the driver that combines
STEBZ and STEIN.

A Testing Infrastructure for Symmetric Tridiagonal Eigensolvers 3

Table 2.1
Lapack-style test matrices with a given eigenvalue distribution. For distributions 1-5, the pa-

rameter k can be chosen as ulp−1 like in the LAPACK tester but other choices are also possible, see
the options for parameter ECOND in Table A.1. For distribution 6, see parameter EDIST in Table A.1.

type description
1 λ1 = 1, λi = 1

k , i = 2, 3, . . . n
2 λi = 1, i = 2, 3, . . . n− 1, λn = 1

k

3 λi = k−(i−1
n−1), i = 1, 2, . . . n

4 λi = 1− (i−1
n−1)(1− 1

k), i = 1, 2, . . . n

5 n random numbers in the range (1
k , 1), their logarithms

are uniformly distributed
6 n random numbers from a specified distribution
7 λi = ulp× i, i = 1, 2, . . . n− 1, λn = 1
8 λ1 = ulp, λi = 1 +

√
ulp× i, i = 2, 3, . . . n− 1, λn = 2

9 λ1 = 1, λi = λi−1 + 100× ulp, i = 2, . . . n

2. A documentation of the reasons for including certain test matrices and how
they are interesting.

The rest of this paper is organized as follows. In Section 2, we describe the matrix
types that are currently available in the tester and justify their relevance as important
test cases. Section 3 describes the design of the testing infrastructure. Concluding
remarks are given in Section 4. The Appendix A contains additional information on
the tester including input and output sample files.

2. Test matrices.

2.1. Random matrices with given eigenvalue Distributions. Table 2.1
lists test matrix classes that are of ‘LAPACK-style’, that is distributions that are
already used in LAPACK’s tester [11], fabricated distributions, and matrices that are
used in [12]. Given the eigenvalues D = diag(λ), the matrix A = QT DQ is formed
using an orthogonal matrix Q generated from random entries. Subsequently, A is
reduced to tridiagonal form using LAPACK’s sytrd.

These test matrices are useful for the following reasons:
• The user can freely specify an eigenvalue distribution.
• The matrices do not need to be stored and can be generated on the fly.
• Matrices of arbitrary sizes can be generated.
• Clustered eigenvalues can be created easily.

In contrast to the tester in the LAPACK distribution, test parameters are directly
accessible and can be changed easily without recompilation.

In addition to the distributions listed in Table 2.1, the user can also read a list
of eigenvalues from a file and then generate a tridiagonal as above using LAPACK’s
latms. See Section 3 for a description of this feature.

2.2. Matrices with interesting properties. Table 2.2 lists a number of ma-
trix types included in our collection. Their performance-relevant properties are ex-
plained in the following Sections 2.2.1 and 2.2.2.

4 J. .W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel

Table 2.2
Built-in matrices with distinguishing performance-relevant features.

type description
0 zero matrix
1 identity matrix
2 (1,2,1) tridiagonal matrix
3 Wilkinson-type tridiagonal matrix
4 Clement-type tridiagonal matrix
5 Legendre-type tridiagonal matrix
6 Laguerre-type tridiagonal matrix
7 Hermite-type tridiagonal matrix

2.2.1. Classical test matrices. The (1-2-1) matrix is defined as

T = tridiag




1 1 1
2 2 · · · 2

1 1 1


 ,

the Wilkinson matrix is

W+
2m+1 = tridiag




1 1 1
m m− 1 · · · 1 0 1 · · · m− 1 m

1 1 1 1


 ,

and the (symmetrized) Clement matrix is given by

T = tridiag




√
n

√
2(n− 1)

√
(n− 1)2

√
n

0 0 · · · 0 0√
n

√
2(n− 1)

√
(n− 1)2

√
n


 ,

that is the off-diagonal entries are
√

i(n + 1− i), i = 1, . . . , n.
These matrices have a number of interesting features that may favor one algorithm

over another. We give a short summary here, a more detailed description and analysis
can be found in [10].

• The (1-2-1) matrix [32, 35] is the archetype of the symmetric tridiagonal
Toeplitz matrix. Its eigenvalues and -vectors are known analytically, see [29]
for a derivation. The eigenvalue clustering is not very strong (although clus-
tering becomes tighter with growing dimension). Thus the matrix is relatively
easy for MRRR to tackle. On the other hand, the top and bottom eigenvec-
tor entries that govern deflation in the Divide and Conquer algorithm do not
decay quickly making this matrix class a difficult one for this algorithm.

• Wilkinson matrices [43, 32, 35] are the opposite of (1-2-1) matrices in that
they strongly favor Divide and Conquer over the MRRR algorithm. The
top and bottom eigenvector entries decay very quickly below the deflation
threshold. It can be verified that Divide and Conquer deflates all but a small
number of eigenvalues (the number depends on the precision and the deflation
threshold). On the other hand, since almost all eigenvalues of W+

2m+1 come in
pairs which are well separated but increasingly close, the representation tree
generated by the MRRR algorithm is very broad and the overhead for the tree
generation is considerable. (For a definition of the representation tree and a
discussion of its importance for the MRRR algorithm, see for example [17].)

A Testing Infrastructure for Symmetric Tridiagonal Eigensolvers 5

• The symmetrized version of the Clement (also called Kac) matrix [6, 32, 35]
represent one interesting example of Golub-Kahan type. Its eigenvalues are
the integers ±(n),±(n − 2), From the computational point of view, the
matrix defines all its eigenvalues to high relative accuracy. As all eigenvalues
are well spaced, matrices of this type are easy for inverse iteration and MRRR.
On the other hand, deflation in Divide and Conquer is limited (especially
when the matrix dimension is odd) because the top and bottom entries of the
eigenvectors do not decay quickly.

In addition to the matrices listed in Table 2.2, the user can also read a tridiagonal
matrix from a file. See Section 3 for a description of this feature.

2.2.2. Tridiagonals from classical orthogonal polynomials. There is a di-
rect correspondence between tridiagonal matrices and certain families of orthogonal
polynomials, see for example [30, 25, 26, 27, 28, 40]. Our presentation uses the nota-
tion from Section 22.7 in [1]. 2 For i ≥ 1, the three-term recurrence

a4i

a3i
fi−1 +

(−a2i

a3i
− λ

)
fi +

a1i

a3i
fi+1 = 0(2.1)

defines a (non-symmetric) tridiagonal matrix which is similar to a symmetric one
provided that the coefficients satisfy a4i+1a1i ≥ 0. Along these lines, the following
symmetric tridiagonal matrices can be derived from Section 22.7 in [1].

The Legendre recurrence, (22.7.10) in [1], yields

T = tridiag




2/
√

3 · 5 3/
√

5 · 7 n/
√

(2n− 1)(2n + 1)
0 0 · · · 0

2/
√

3 · 5 3/
√

5 · 7 n/
√

(2n− 1)(2n + 1)


 ,

that is the off-diagonal entries are i/
√

(2i− 1)(2i + 1), i = 2, . . . , n, see also [29].
Using the Laguerre recurrence, (22.7.12) in [1], with α = 0 and off-diagonal entries

chosen to be positive, one obtains

T = tridiag




2 3 n− 1 n
3 5 · · · 2n− 1 2n + 1

2 3 n− 1 n


 .

Lastly, the Hermite recurrence, (22.7.14) in [1], gives

T = tridiag




√
1

√
2

√
n− 2

√
n− 1

0 0 · · · 0 0√
1

√
2

√
n− 2

√
n− 1


 .

(Note that the Chebyshev polynomials result in symmetric tridiagonal Toeplitz
matrices that are affine translates of the (1-2-1) matrix from Section 2.2.)

All of these matrices have a fairly spread-out spectrum: compared to the spectral
diameter, their eigenvalues are not very strongly clustered. Consequently, the MRRR
algorithm can cope with them very efficiently. On the other hand, these matrix
classes are challenging for Divide & Conquer which does no or little deflation on them
compared to other matrix types.

2In [1], the coefficients of classical three-term recurrences are reported in the form a1ifi+1(λ) =
(a2i+a3iλ)fi(λ)−a4ifi−1(λ) , where a3i 6= 0. We use the equivalent (2.1) from which the tridiagonal
can be directly derived.

6 J. .W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel

2.3. Glued Matrices. Glued matrices, in particular glued Wilkinson matrices,
emerged as important test matrices in particular for the MRRR algorithm, see [18].

For symmetric tridiagonal matrices T1, . . . , Tp, define

T =




T1

. . .
Tp


 +

p−1∑

i=1

γi

(
xiy

T
i + yix

T
i

)
,(2.2)

where xi, yi, i = 1, . . . , p−1 are columns of the identity corresponding to the interfaces
between the diagonal blocks. The quantities γi are the glue factors.

The tester allows the user to generate general glued matrices by taking any com-
bination of glue factors and matrices generated from the types listed in Tables 2.1
and 2.2; see Sections 2.4 and 3 for details.

2.4. Tridiagonal matrices from applications. In the following, we describe
those tridiagonal matrices in our tester that stem from applications.

• Examples from applications in computational quantum chemistry and elec-
tronic structure calculations. The tridiagonal matrices stem from solving a
Schroedinger equation [12, 14] and were provided by George Fann using the
NWChem computational chemistry package [24, 23]. Their dimensions range
from 120 to 2053. These matrices have clustered eigenvalues that require
a large number of reorthogonalizations when inverse iteration is used. This
motivated the development of the MRRR algorithm which can cope well with
this type of matrix.

• Examples from sparse matrix collections. These include matrices from the
BCSSTRUC1 set in the Harwell-Boeing Collection [20, 21, 22] and matrices
from the Alemdar, NASA, and Cannizzo sets in the University of Florida
Sparse Matrix Collection [8]. The matrices are related to the modeling of
power system networks, a finite-difference model for the shallow wave equa-
tions for the Atlantic and Indian Oceans, and finite-element problems. The
dimension of the corresponding tridiagonal matrices range from 48 to 8012.
These matrices were chosen for their spectrum which typically consists of
a part with eigenvalues varying almost ’continuously’ and another one with
several isolated large clusters of eigenvalues of varying tightness. A large
number of reorthogonalization steps is required within these clusters when
inverse iteration is used.

For small matrices, the tridiagonal form of the sparse matrices was obtained with
LAPACK’s tridiagonal reduction routine sytrd. For the larger matrices we generated
tridiagonals by means of a simple Lanczos algorithm without reorthogonalization and
a starting vector filled with ones, as a way to provoke the appearance of very close
eigenvalues in the resulting tridiagonal. In this case, we ran Lanczos for k × n steps,
where k = 1, . . . , 4 and n is the dimension of the original sparse matrix. A Matlab
description of the Lanczos algorithm is given in Appendix A.4.

2.5. What can be learned. Algorithm development and systematic testing
using multiple platforms and various matrix classes is a challenging task. A systematic
comparison of LAPACK’s eigensolvers with respect to floating point operations, time,
and accuracy can be found in [10]. To give the reader a glimpse of the findings, we
describe a few interesting issues.

Why can the Divide & Conquer algorithm on a (1-2-1) matrix of dimension 2048
be almost twice as fast as on one of dimensions 2047 or 2049? Why, in contrast, does

A Testing Infrastructure for Symmetric Tridiagonal Eigensolvers 7

the MRRR algorithm run equaly fast for all three of them? (Answer: substantially
more deflation occurs in Divide & Conquer for n=2048. On the other hand, the
eigenvalue distributions of the three matrices are so close that there is no runtime
difference in MRRR.)

What impact has the BLAS library on tridiagonal eigensolvers? (Answer: except
for Divide & Conquer, LAPACK’s tridiagonal eigensolvers do not make use of higher
level BLAS. However, between the self-compiled reference BLAS from Netlib and
ATLAS BLAS, we noted timing differences of up to a factor of 10 for the Divide &
Conquer algorithm.)

If the MRRR algorithm uses significantly fewer floating point operations than
Divide & Conquer, why can it still be slower on some matrices? (Answer: while
Divide & Conquer spends a majority of its time on matrix-matrix multiplication,
MRRR relies heavily on Sturm counts which have an expensive division operation in
each step.)

3. Design of the testing infrastructure. This section describes in detail the
testing infrastructure stetester.

Section 3.1 describes performance measures and the criteria for evaluating nu-
merical results.

Input data for the tester is specified by means of key words or macros. These
macros are groups of characters that uniquely define a specific subset of the input
data, such as matrix types and dimensions, matrices to be read from files, etc. The
tester includes a parser that interprets the data and the appropriate matrix types,
parameters, and eigensolvers to be called. This is described in Section 3.2. After
completion, the tester can return a large number of statistics regarding the performed
tests, see Section 3.3.

3.1. Test criteria.

3.1.1. Performance measures: time, flops, flips. The Fortran 95 function
cpu time is used by default for cross-architecture portability. To obtain more de-
tailed performance-related information on floating point operations or instructions,
PAPI [19] can be used.

In order to achieve accurate timing results for matrices of smaller dimension, the
same test case can be run multiple times and the average runtime is reported. The
number of tests can be set such that the sum of all run times is significantly larger
than the timer resolution.

3.1.2. Numerical accuracy. For a tridiagonal matrix T and computed eigen-
vectors Z = [z1 z2 · · · zm] and eigenvalues W = diag(w1 w2 · · ·wm), m ≤ n, stetester
performs the following tests using the LAPACK routine lansy:

||I − ZZT ||
n× ulp

, if m = n(3.1)

||I − ZT Z||
n× ulp

, if m < n(3.2)

which measures the orthogonality of the computed eigenvectors, and

||T − ZWZT ||
||T || × n× ulp

, if m = n(3.3)

||ZT TZ −W ||
||T || × n× ulp

, if m < n(3.4)

8 J. .W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel

which measures the accuracy of the computed eigenpairs.
For large matrices these tests can take a significant amount of time, so the user is

given the option of choosing how many diagonals of the involved arrays are actually
computed. Because eigenvalues are sorted from smallest to larges, faulty results in
the orthogonality tests are likely to be caused by eigenvectors related to eigenvalues
that are nor far apart from each other. By taking say 10% or less of the diagonals we
can save a significant amount of CPU time in large cases.

For testing the subset functionality in stevx and stegr, we pursue two ap-
proaches. For computing eigenvalues from a given smallest to a given largest index
(parameter RANGE=‘I’), the code can pick random pairs of integers between 1 and
n. For computing eigenvalues within an interval (parameter RANGE=‘V’), the code
can select random interval bounds between (λmin and λmax) (which are obtained with
bisection, subroutine stebz).

3.2. Input Data and Key Words. The interface to stetester is a text parser.
On input, key words can be specified in any order in the input file, either in lower
or upper case, with the corresponding subset of data that they define. Data can be
separated by blanks or commas, and the character % is interpreted as the beginning
of a comment. Therefore, a line in the input file that begins with a % is simply
ignored. The macros currently supported by stetester are listed in Tables A.1-
A.3 in Appendix A.1. As an example, a simple input file is given in Table A.4 in
Appendix A.2.

3.3. Output Files. One of the important features of the testing infrastructure
is its ability to print data for post-processing. The following output files can be
generated optionally:

• File stetester.out.T. Tridiagonal matrix written as triplets j, dj , ej for each
case (including the current seed of the random number generator if applica-
ble).

• File stetester.out.W. Eigenvalues obtained by each tridiagonal eigensolver
called.

• File stetester.out.Z. Eigenvectors obtained by each tridiagonal eigensolver
called.

• File stetester.out.log. Timing and results of the tests for orthogonality
(3.1) and residual norm (3.3) for each tridiagonal eigensolver called.

• File stetester.out.m. Tridiagonal matrix, eigenvalues and eigenvectors
written in Matlab notation. The tridiagonal is represented by arrays D i
(diagonal entries) and E i (off-diagonal entries), where i is the case num-
ber. The eigenvalues and eigenvectors are given in arrays W i s and Z i s,
respectively, where i is the case number and s identifies the tridiagonal eigen-
solver according to the algorithm list as used for parameter CALLST in Ta-
ble A.1. For example, 1 stands for steqr with COMPZ=‘V’, 2 for stevx with
RANGE=‘A’, and so forth. This is to distinguish between results computed
with different algorithms.

As an illustration, a simple Matlab-style output file is given in Table A.5 in Ap-
pendix A.3.

4. Conclusions and availability. The main strength of the testing infrastruc-
ture described here is its ability to easily generate, read, and process a variety of
test cases for symmetric tridiagonal eigensolvers. Together with our collection of test
matrices, it allows users to perform exhaustive tests on a large range of computer

A Testing Infrastructure for Symmetric Tridiagonal Eigensolvers 9

platforms, with various compilers, revealing not only interesting numerical behavior
but also important performance issues. It is available upon request.

In our experience, the presented infrastructure is an invaluable tool. As a col-
lection of interesting matrices, it constitutes a benchmark for algorithm evaluation.
As portable software infrastructure, it can help identify failures in algorithms, devise
mechanisms to make algorithms more robust and efficient, and compare algorithms
across computer architectures. We therefore anticipate it to be helpful for users who
are interested in similar studies.

REFERENCES

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables. Dover, New York, NY, 9 edition, 1965.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK User’s Guide. SIAM,
Philadelphia, 3. edition, 1999.

[3] Z. Bai, D. Day, J. W. Demmel, and J. J. Dongarra. A Test Matrix Collection for Non-Hermitian
Eigenvalue Problems. Technical Report UT-CS-97-355, University of Tennessee, Knoxville,
TN, USA, 1997. Also as LAPACK Working Note 123.

[4] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and Henk van der Vorst. Templates for the solution
of algebraic eigenvalue problems - A practical guide. SIAM, Philadelphia, 2000.

[5] J. Bunch, P. Nielsen, and D. Sorensen. Rank-one modification of the symmetric eigenproblem.
Numer. Math., 31:31–48, 1978.

[6] P. A. Clement. A class of triple-diagonal matrices for test purposes. SIAM Review, 1:50–52,
1959.

[7] J. J. M. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem.
Numer. Math., 36:177–195, 1981.

[8] T. A. Davis. University of florida sparse matrix collection. NA Digest, vol. 92, no. 42, October
16, 1994, NA Digest, vol. 96, no. 28, July 23, 1996, and NA Digest, vol. 97, no. 23, June
7, 1997.

[9] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, USA, 1997.
[10] J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel. Lapack Working Note xxx:

Accuracy and Performance of LAPACK’s Symmetric Tridiagonal Eigensolvers. University
of California, Berkeley, 2006. In preparation.

[11] J. W. Demmel and A. McKenney. A test matrix generation suite. Computer science dept.
technical report, Courant Institute, New York, NY, 1989. (also LAPACK Working Note
#9).

[12] I. S. Dhillon. A New O(n2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector
Problem. PhD thesis, University of California, Berkeley, California, 1997.

[13] I. S. Dhillon. Current inverse iteration software can fail. BIT, 38:4:685–704, 1998.
[14] I. S. Dhillon, G. Fann, and B. N. Parlett. Application of a new algorithm for the symmetric

eigenproblem to computational quantum chemistry. In Proceedings of the Eighth SIAM
Conference on Parallel Processing for Scientific Computing. SIAM, March 1997.

[15] I. S. Dhillon and B. N. Parlett. Multiple representations to compute orthogonal eigenvectors
of symmetric tridiagonal matrices. Linear Algebra and Appl., 387:1–28, 2004.

[16] I. S. Dhillon and B. N. Parlett. Orthogonal eigenvectors and relative gaps. SIAM J. Matrix
Anal. Appl., 25(3):858–899, 2004.

[17] I. S. Dhillon, B. N. Parlett, and C. Vömel. LAPACK working note 162: The design and
implementation of the MRRR algorithm. Technical Report UCBCSD-04-1346, University
of California, Berkeley, 2004. Revised version to appear in ACM Trans. Math. Soft.

[18] I. S. Dhillon, B. N. Parlett, and C. Vömel. Glued matrices and the MRRR algorithm. SIAM
J. Sci. Comput., 27(2):496–510, 2005. Revised version of LAPACK Working Note 163.

[19] J. J. Dongarra, S. Moore, P. Mucci, K. Seymour, D. Terpstra, and H. You. Performance
Application Programming Interface (PAPI).

[20] I. S. Duff, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems. ACM Trans. Math.
Software, 15:1–14, 1989.

[21] I. S. Duff, R. G. Grimes, and J. G. Lewis. Users’ guide for the Harwell-Boeing sparse matrix col-
lection (release I). Technical Report RAL-TR-92-086, Atlas Centre, Rutherford Appleton
Laboratory, 1992.

[22] I. S. Duff, R. G. Grimes, and J. G. Lewis. The Rutherford-Boeing Sparse Matrix Collection.
Technical Report RAL-TR-97-031, Atlas Centre, Rutherford Appleton Laboratory, 1997.

10 J. .W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel

Also Technical Report ISSTECH-97-017 from Boeing Information & Support Services and
Report TR/PA/97/36 from CERFACS, Toulouse.

[23] E. Apra et al. NWChem, a computational chemistry package for parallel computers, version
4.7. Technical report, Pacific Northwest National Laboratory, Richland, WA. USA, 2005.

[24] R. A. Kendall et al. High Performance Computational Chemistry: An overview of NWChem a
distributed parallel application. Computer Phys. Comm., 128:260–283, 2000.

[25] W. Gautschi. Algorithm 726: ORTHPOL–a package of routines for generating orthogonal
polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software, 20(1):21–62,
1994.

[26] W. Gautschi. The interplay between classical analysis and (numerical) linear algebra — a
tribute to Gene H. Golub. Electronic Transactions on Numerical Analysis, 13:119–147,
2002.

[27] W. Gautschi. Orthogonal polynomials: computation and approximation. Oxford University
Press, Oxford, 2004.

[28] W. Gautschi. Orthogonal polynomials (in Matlab). J. Comp. Appl. Math., 178:215–234, 2005.
[29] S. K. Godunov, A. G. Antonov, O. P. Kiriljuk, and V. I. Kostin. Guaranteed Accuracy in

Numerical linear Algebra. Kluwer Academic, Dordrecht, The Netherlands, 1993.
[30] G. H. Golub. Some modified matrix eigenvalue problems. SIAM Review, 15:318–334, 1973.
[31] G. H. Golub and C. van Loan. Matrix Computations. The John Hopkins University Press,

Baltimore, Maryland, 3. edition, 1996.
[32] R. Gregory and D. Karney. A Collection of Matrices for Testing Computational Algorithms.

Wiley, New York, 1969.
[33] M. Gu and S. C. Eisenstat. A stable and efficient algorithm for the rank-1 modification of the

symmetric eigenproblem. SIAM J. Matrix Anal. Appl., 15(4):1266–1276, 1994.
[34] M. Gu and S. C. Eisenstat. A divide-and-conquer algorithm for the symmetric tridiagonal

eigenproblem. SIAM J. Matrix Anal. Appl., 16(1):172–191, 1995.
[35] N. J. Higham. Algorithm 694: A Collection of Test Matrices in MATLAB. ACM Trans. Math.

Software, 17(3):289–305, 1991.
[36] I. C. F. Ipsen. Computing an eigenvector with inverse iteration. SIAM Review, 39(2):254–291,

1997.
[37] C. R. Lee and G. W. Stewart. Eigentest: A test matrix generator for large-scale eigenproblems.

UMIACS TR-2006-07, CMSC TR-4783, University of Maryland, College Park, MD, 2006.
[38] O. A. Marques, E. J. Riedy, and C. Vömel. Lapack working note 172: Benefits of IEEE-754

features in modern symmetric tridiagonal eigensolvers. Technical Report UCBCSD-05-
1414, University of California, Berkeley, 2005. To appear in SIAM J. Sci. Comp.

[39] A. M. Matsekh. The Godunov-inverse iteration: a fast and accurate solution to the symmetric
tridiagonal eigenvalue problem. Appl. Numer. Math., 54(2):208–221, 2005.

[40] B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM Press, Philadelphia, PA, 1998.
[41] B. N. Parlett and I. S. Dhillon. Fernando’s solution to Wilkinson’s problem: an application of

double factorization. Linear Algebra and Appl., 267:247–279, 1997.
[42] B. N. Parlett and I. S. Dhillon. Relatively robust representations of symmetric tridiagonals.

Linear Algebra and Appl., 309(1-3):121–151, 2000.
[43] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, 1965.

Appendix A. Usage of the testing infrastructure stetester.

A.1. Supported macros. This section serves as a reference. Tables A.1, A.2,
and A.3 contain all currently supported macros.

A.2. A sample input file. Table A.4 contains a sample input file. After the
test matrices have been specified, the algorithms to be tested (’ALL’) and the output
format are selected.

A.3. A sample output file in Matlab format. Table A.5 contains a sample
output file in Matlab format of a tridiagonal matrix with diagonal D and offdiagonal
E. Printed are the computed eigenpairs W,Z from two different computations with
the same matrix, first using QR and then MRRR.

A.4. Lanczos code. In Table A.6 we present a simple block Lanczos procedure
without reorthogonalization in Matlab format. It can be used to generate tridiagonal
matrices from sparse matrices or matrix pairs.

A Testing Infrastructure for Symmetric Tridiagonal Eigensolvers 11

Table A.1
Key words for stetester, part 1.

Key word argument purpose
CALLST list Defines the subroutines to be tested. Possible entries in

list are:
STEQRV (calls STEQR with COMPZ=‘V’)
STEVXA (calls STEVX with RANGE=‘A’)
STEVXI (calls STEVX with RANGE=‘I’)
STEVXV (calls STEVX with RANGE=‘V’)
STEDCI (calls STEDC with COMPZ=‘I’)
STEGRA (calls STEGR with RANGE=‘A’)
STEGRI (calls STEGR with RANGE=‘I’)
STEGRV (calls STEGR with RANGE=‘V’)
ALL (performs all tests above)

DUMP list Defines data to be written into files. Possible entries in
list are:
T (writes the tridiagonal matrix as triplets i, ti,i, ti,i+1

in file stetester.out.T)
W (writes the eigenvalues in file stetester.out.W)
Z (writes the eigenvectors in file stetester.out.Z)
LOG (writes timings, residuals and orthogonality

level in file stetester.out.log)
T.M (writes the tridiagonal matrix in Matlab format

in file stetester.out.m)
W.M (writes the eigenvalues in Matlab format

in file stetester.out.m)
Z.M (writes the eigenvectors in Matlab format

in file stetester.out.m)
ECOND int Sets the condition number for types 1 to 4 in Table 2.1.

Possible values of int are:
1, then k = 1√

ulp
, default

2, then k = 1
n×√ulp

3, then k = 1
10×n×√ulp

4, then k = 1
ulp

5, then k = 1
n×ulp

6, then k = 1
10×n×ulp

EDIST int Sets the random distribution to be used in type 6 in Table
2.1. Possible values of int are:
1, for uniform distribution (-1,1), default
2, for uniform distribution (0,1)
3, for normal distribution (0,1)

ESIGN int Assigns (random) signs to the eigenvalues defined in Ta-
ble 2.1. Possible values of int are:
0, then the eigenvalues will not be negative, default
1, then the eigenvalues can be positive, negative or zero

12 J. .W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel

Table A.2
Key words for stetester, part 2.

Key word argument purpose
EIGVAL Defines the built-in eigenvalue distributions to be used in

the generation of test matrices. The next two lines must
set integers

etype1 etype2 etype3 ...
esize1 esize2 esize3 ...

where etype is a list of types (see Table 2.1) and esize
is a list of dimensions. A negative etype reverses the
eigenvalue distribution. For example, etype= −1 results
in λi = 1

k , i = 1, 2, . . . n− 1, λn = 1.
EIGVALF string Defines a file containing an eigenvalue distribution to

be used in the generation of a tridiagonal matrix, as
discussed in Section 2.1. The file defined by string
should contain only one entry per line as follows

n
λ1
...
λn

EIGVI Defines indices of the smallest and largest eigenvalues to
be computed. The next two lines must define pairs of
integers

IL1 IL2 ...
IU1 IU2 ...

with 1 ≤ ILi ≤IUi. These indices are used only in the
tests where RANGE=‘I’.

EIGVV Defines lower and upper bounds of intervals to be
searched for eigenvalues. The next two lines must de-
fine pairs of values

VL1 VL2 ...
VU1 VU2 ...

with VLi ≤ VUi. These indices are used only in the tests
where RANGE=‘V’.

GLUED Defines glued matrices as in (2.2). The next fours lines
must set

gform1 gform2 ... gformk−1 gformk

gtype1 gtype2 ... gtypek−1 gtypek

gsize1 gsize2 ... gsizek−1 gsizek

γ1 γ2 ... γk−1

where the integers gform, gtype and gsize define, respec-
tively, how the matrix is generated (1 for built-in eigen-
value distribution, 2 for built-in tridiagonal matrix), its
type (accordingly to Tables 2.1 and 2.2) and its dimen-
sion. The real value γ (real) is the glue factor.

A Testing Infrastructure for Symmetric Tridiagonal Eigensolvers 13

Table A.3
Key words for stetester, part 3.

Key word argument purpose
HBANDA k Sets the halfbandwidth of the symmetric matrix A

to be generated and then tridiagonalized; k must be
an integer between 1 and 100, which corresponds to
max(1, (kn)/100)) subdiagonals, where n is the dimen-
sion of the matrix. By default k = 100.

HBANDR k Sets the halfbandwidth of the matrices used in the tests
3.1 and 3.3; k must be an integer between 0 and 100,
then max(1, (kn)/100)) subdiagonals of those matrices
are computed. If k = 0 the tests are not performed and
the corresponding results are simply set to 0. By default,
k = 100.

ISEED k1 k2 k3 k4 Sets the (initial) seed of the random number generator.
Each (integer) k should lie between 0 and 4095 inclusive
and k4 should be odd. The default is ki = 5− i.

MATRIX Defines built-in tridiagonal matrices to be used in the
tests. The next two lines must set integers

mtype1 mtype2 mtype3 ...
msize1 msize2 msize3 ...

where mtype (integer) is a list of built-in tridiagonal ma-
trices (see Table 2.2), and msize (integer) is a list of di-
mensions.

MATRIXF string Defines a file containing a tridiagonal matrix, where
string is a file name. This file should contain

n
1 d1 e1

2 d2 e2

...
n dn 0.0

which will then be used to generate a tridiagonal matrix
with diagonal entries set to di and offdiagonals set to ei.

NRILIU k Defines the number of k random indices of the smallest
and largest eigenvalues to be computed. These indices
are used only in the tests where RANGE=‘I’.

NRVLVU k Defines the number of k random lower and upper bounds
of intervals to be searched for eigenvalues. These i inter-
vals are used only in the tests where RANGE=‘V’.

END End of data (subsequent lines are ignored).

14 J. .W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel

Table A.4
A sample input file for stetester.

%--

% This is a simple input file for STETESTER.

%--

%

EIGVAL % Sets built-in eigenvalue distributions

3 % Distribution 3, EIG(i)=COND**(-(i-1)/(N-1))

10 15 % Dimensions of the matrices to be generated

%

MATRIX % Sets built-in matrices

2 3 % Matrix type 2 and 3

20 % Dimension of the matrices to be generated

%

GLUED % Sets glued matrices

1 2 1 % If 1, set eigenvalues; if 2, set matrix

1 2 3 % Eigenvalue distribution or matrix type

10 11 12 % Dimensions

0.001 0.002 % Glue factors

%

EIGVALF DATA/T_0010.eig % Eigenvalues read from file ’T10.eig’

%

MATRIXF DATA/T_0010.dat % Matrix read from file ’T10.dat’

%

% Tests to be performed. Note that ’ALL’ is equivalent to

%

% "STEQRV" (calls STEQR with COMPZ=’V’),

% "STEVXA" (calls STEVX with RANGE=’A’),

% "STEVXI" (calls STEVX with RANGE=’I’),

% "STEVXV" (calls STEVX with RANGE=’V’),

% "STEDCI" (calls STEDC with COMPZ=’I’),

% "STEGRA" (calls STEGR with RANGE=’A’),

% "STEGRI" (calls STEGR with RANGE=’I’),

% "STEGRV" (calls STEGR with RANGE=’V’),

%

% Also note that no interval was specified (by means of EIGVI,

% EIGVV, NRILIU or NRVLVU) so in spite of ’ALL’ some tests

% will be skipped.

%

CALLST ALL

%

% Halfbandwidth of the symmetric matrix to be generated and then

% tridiagonalized. This can save time for big matrices.

%

HBANDA 100

%

% Dump results in different formats (including Matlab)

%

DUMP LOG T W Z T.M W.M Z.M

%

END

A Testing Infrastructure for Symmetric Tridiagonal Eigensolvers 15

Table A.5
A sample output file generated by stetester. The data is printed in Matlab format and stored

with a name whose trailing part identifies the test that has been executed

% Case: 1 ##
N = 5;
N_001 = N;
D = zeros(N,1); E = zeros(N,1);
D(1)= 6.364984420732012E-002; E(1)=-2.438638589637976E-001;
D(2)= 9.364644735979822E-001; E(2)=-4.811682261688812E-003;
D(3)= 1.093556433149412E-002; E(3)= 3.729709837873370E-005;
D(4)= 1.218230276935389E-004; E(4)= 5.319506124657539E-006;
D(5)= 2.722043635334067E-007; E(5)= 0.000000000000000E+000;
D_001 = D; E_001 = E; clear D E;
% QR algorithm STEQR(COMPZ=I) ==
M = 5;
W = zeros(M,1);
W(1)= 1.490116120469489E-008; W(2)= 1.348699152530776E-006;
W(3)= 1.220703124999231E-004; W(4)= 1.104854345603982E-002;
W(5)= 1.000000000000000E+000;
W_001_1 = W; clear W;
Z = zeros(N,M);
Z(1, 1)= 1.307984066973555E-001; Z(2, 1)= 3.413911473056844E-002;
Z(3, 1)= 1.518458390297948E-002; Z(4, 1)=-4.786418109812126E-002;
Z(5, 1)= 9.895477483327149E-001; Z(1, 2)= 9.521524057428332E-001;
Z(2, 2)= 2.485118884672883E-001; Z(3, 2)= 1.094543724694096E-001;
Z(4, 2)=-2.781623695716281E-002; Z(5, 2)=-1.374541190267801E-001;
Z(1, 3)= 3.316346817614305E-002; Z(2, 3)= 8.639251903968444E-003;
Z(3, 3)= 4.003930825830011E-004; Z(4, 3)= 9.984606995074429E-001;
Z(5, 3)= 4.360755587691128E-002; Z(1, 4)= 1.080661771201757E-001;
Z(2, 4)= 2.330981518906979E-002; Z(3, 4)=-9.938646010435163E-001;
Z(4, 4)=-3.392442840664115E-003; Z(5, 4)=-1.633388614144078E-006;
Z(1, 5)=-2.520306703255168E-001; Z(2, 5)= 9.677077957618335E-001;
Z(3, 5)=-4.707784724629880E-003; Z(4, 5)=-1.756081031362012E-007;
Z(5, 5)=-9.341486344518498E-013;
Z_001_1 = Z; clear Z;
M_001_1 = M; clear M;
% MRRR algorithm STEGR(RANGE=A) ==
M = 5;
W = zeros(M,1);
W(1)= 1.490116120299405E-008; W(2)= 1.348699152440647E-006;
W(3)= 1.220703124999230E-004; W(4)= 1.104854345603979E-002;
W(5)= 9.999999999999978E-001;
W_001_6 = W; clear W;
Z = zeros(N,M);
Z(1, 1)= 1.307984067061942E-001; Z(2, 1)= 3.413911473287538E-002;
Z(3, 1)= 1.518458390399541E-002; Z(4, 1)=-4.786418109837592E-002;
Z(5, 1)= 9.895477483314390E-001; Z(1, 2)= 9.521524057416197E-001;
Z(2, 2)= 2.485118884669718E-001; Z(3, 2)= 1.094543724692678E-001;
Z(4, 2)=-2.781623695669255E-002; Z(5, 2)=-1.374541190359646E-001;
Z(1, 3)= 3.316346817611779E-002; Z(2, 3)= 8.639251903961875E-003;
Z(3, 3)= 4.003930825800720E-004; Z(4, 3)= 9.984606995074433E-001;
Z(5, 3)= 4.360755587691132E-002; Z(1, 4)=-1.080661771201750E-001;
Z(2, 4)=-2.330981518906962E-002; Z(3, 4)= 9.938646010435160E-001;
Z(4, 4)= 3.392442840664119E-003; Z(5, 4)= 1.633388614144083E-006;
Z(1, 5)=-2.520306703255170E-001; Z(2, 5)= 9.677077957618334E-001;
Z(3, 5)=-4.707784724629883E-003; Z(4, 5)=-1.756081031362015E-007;
Z(5, 5)=-9.341486344518528E-013;
Z_001_6 = Z; clear Z;
M_001_6 = M; clear M;
clear N;

16 J. .W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel

Table A.6
A simple block Lanczos procedure without reorthogonalization; the block size is chosen as one.

function [Q,T] = lztd(A,B,s)

%***

%* *

%* lztd performs s steps of the single-vector Lanczos algorithm *

%* ==== for the symmetric eigenvalue problem A*x = lambda*B*x *

%* *

%* Usage: *

%* [Q,T] = lztd(A,B,s) *

%* Input arguments: *

%* A : the matrix A in A*x = lambda*B*x *

%* B : the matrix B in A*x = lambda*B*x *

%* s : number of steps *

%* Output arguments: *

%* Q : basis of vectors *

%* T : tridiagonal matrix *

%* *

%***

n = size(A,1);

[L,U,P] = lu(A);

Q = []; q_jm1 = zeros(n,1); b_j = 0;

r_0 = ones(n,1);

q_j = r_0/(sqrt(r_0’*B*r_0));

for j = 1:s

%.. three-term recurrence

r_j = U\(L\(P*(B*q_j)));

r_j = r_j - q_jm1*b_j’;

a_j = q_j’*B*r_j;

r_j = r_j - q_j*a_j;

%.. check for invariant subspace

b_jp1 = sqrt(r_j’*B*r_j);

if b_jp1 <= eps*100

q_jp1 = zeros(n,1);

b_jp1 = 0;

display(sprintf(’Invariant subspace, quitting’))

return

end

%.. normalize r_j and get q_jp1

q_jp1 = r_j/b_jp1;

%.. insert a_j and b_jp1 into T, and q_j into Q

T(j,j) = a_j; if j>1, T(j-1,j) = b_j; T(j,j-1) = b_j; end

Q = [Q q_j];

q_jm1 = q_j;

q_j = q_jp1;

b_j = b_jp1;

end

return

